A Novel Particulate Form of Ca/CaMKII-Dependent Protein Kinase II in Neurons

نویسندگان

  • Ayse Dosemeci
  • Thomas S. Reese
  • Jennifer Petersen
  • Jung-Hwa Tao-Cheng
چکیده

Cytoskeletal and postsynaptic density (PSD) fractions from forebrain contain discrete spherical structures that are immunopositive for Ca/calmodulin-dependent protein kinase II (CaMKII). Spherical structures viewed by rotary shadow electron microscopy have an average diameter of ;100 nm and, in distinction to postsynaptic densities, do not immunolabel for PSD-95. These structures were purified to near homogeneity by extraction with the detergent N-lauryl sarcosinate. Biochemical analysis revealed that CaMKII accounts for virtually all of the protein in the purified preparation, suggesting that spherical structures are clusters of self-associated CaMKII. Exposure of cultured hippocampal neurons to a mitochondrial uncoupler in glucose-free medium promotes the formation of numerous CaMKII-immunopositive structures identical in size and shape to the CaMKII clusters observed in subcellular fractions. Clustering of CaMKII would reduce its kinase function by preventing its access to fixed substrates. On the other hand, clustering would not affect the ability of the large cellular pool of CaMKII to act as a calmodulin sink, as demonstrated by the Cadependent binding of gold-conjugated calmodulin to CaMKII clusters. We propose that the observed clustering of CaMKII into spherical structures is a protective mechanism preventing excessive protein phosphorylation upon loss of Ca homeostasis, without compromising calmodulin regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P26: Long-Term Potentiation: The Mechanisms of CaMKII in Lerarning and Memory

Long-term potentiation (LTP) is a form of activity dependent plasticity that induced by high-frequency stimulation or theta burst stimulation and results in synaptic transmission. Several Studies have been shown that LTP is one of the most important processes in the CNS that plays an important role in learning and memory formation. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major...

متن کامل

The eag potassium channel binds and locally activates calcium/calmodulin-dependent protein kinase II.

Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the regulation of neuronal excitability in many systems. Recent studies suggest that local regulation of membrane potential can have important computational consequences for neuronal function. In Drosophila, CaMKII regulates the eag potassium channel, but if and how this regulation was spatially restricted was unknown...

متن کامل

Regulation of calcium/calmodulin-dependent protein kinase II activation by intramolecular and intermolecular interactions.

As its name implies, calcium/calmodulin-dependent protein kinase II (CaMKII) is calcium dependent. In its basal state, the activity of CaMKII is extremely low. Regulation of intracellular calcium levels allows the neuron to link activity with phosphorylation by CaMKII. This review will briefly summarize our current understanding of the intramolecular mechanisms of activity regulation and their ...

متن کامل

Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP?

Calcium/calmodulin-dependent protein kinase II (CaMKII) is concentrated in the postsynaptic density (PSD) and plays an important role in the induction of long-term potentiation (LTP). Because this kinase is persistently activated after the induction, its activity could also be important for LTP maintenance. Experimental tests of this hypothesis, however, have given conflicting results. In this ...

متن کامل

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in the Rat Hippocampus during Morphine Withdrawal

Introduction: Calcium/calmodulin-dependent protein kinase II (CaMKII) is highly expressed in the hippocampus, which has a pivotal role in reward-related memories and morphine dependence. Methods: In the present study, morphine tolerance was induced in male Wistar rats by 7 days repeated morphine injections once daily, and then gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hipp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000